The number of possible orders in which i red balls and n − i black balls can be drawn from the urn is the binomial coefficient
where k! = k × (k − 1) ×⋯× 2 × 1 for positive integers k, and 0! = 1. Hence, the probability in question, which equals the number of favourable outcomes divided by the number of possible outcomes, is given by the binomial distribution
where p = r/(r + b) and q = b/(r + b) = 1 − p.
For example, suppose r = 2b and n = 4. According to equation (3), the probability of “exactly two red balls” is
In this case the
possible outcomes are easily enumerated: (rrbb), (rbrb), (brrb), (rbbr), (brbr), (bbrr).
(For a derivation of equation (2), observe that in order to draw exactly i red balls in n draws one must either draw i red balls in the first n − 1 draws and a black ball on the nth draw or draw i − 1 red balls in the first n − 1 draws followed by the ith red ball on the nth draw. Hence,
from which equation (2) can be verified by induction on n.)
Two related examples are (i) drawing without replacement from an urn containing r red and b black balls and (ii) drawing with or without replacement from an urn containing balls of s different colours. If n balls are drawn without replacement from an urn containing r red and b black balls, the number of possible outcomes is
of which the number favourable to drawing i red and n − i black balls is
Hence, the probability of drawing exactly i red balls in n draws is the ratio
If an urn contains balls of s different colours in the ratios p1:p2:…:ps, where p1 +⋯+ ps = 1 and if n balls are drawn with replacement, the probability of obtaining i1 balls of the first colour, i2 balls of the second colour, and so on is the multinomial probability
The evaluation of equation (3) with pencil and paper grows increasingly difficult with increasing n. It is even more difficult to evaluate related cumulative probabilities—for example the probability of obtaining “at most j red balls” in the n draws, which can be expressed as the sum of equation (3) for i = 0, 1,…, j. The problem of approximate computation of probabilities that are known in principle is a recurrent theme throughout the history of probability theory and will be discussed in more detail below.